
Software-based Automatic Differentiation is Flawed

Daniel Johnson Trevor Maxfield Yongxu Jin Ronald Fedkiw
Stanford University

{dansj,maxfit,yxjin,rfedkiw}@stanford.edu

Abstract

Various software efforts embrace the idea that object oriented programming enables
a convenient implementation of the chain rule, facilitating so-called automatic
differentiation via backpropagation. Such frameworks have no mechanism for
simplifying the expressions (obtained via the chain rule) before evaluating them.
As we illustrate below, the resulting errors tend to be unbounded.

1 Introduction

Basic calculus texts introduce students to many of the rules of differentiation including the product
rule, quotient rule, chain rule, etc. Various large-scale software packages (e.g., PyTorch [1], Ten-
sorFlow [2], Torch [3], Caffe [4], Theano [5], Jax [6]) utilize the various rules of differentiation,
leveraging the idea of object oriented programming in order to elegantly implement the chain rule.
Each implemented function is paired with code that computes its derivative, and branches are created
to connect functions that call other functions. Using the values obtained in a so-called forward
pass through the code, the computational graph is evaluated by following the branches in order to
obtain values for various derivatives. As is taught (as early as the discussion on limits) in various
calculus texts, one ought to simplify expressions before evaluating them. This is even more important
when considering how the rules of differentiation (especially the chain rule) increase the number of
expressions. There seems to be no good remedy for expression simplification in the popular software
packages.

2 A Trivial Example

Suppose one simple function is f(x) = x2 − 4 and another is g(x) = x− 2; then h(x) = f(x)
g(x) has

h(2) = NaN on an AMD Ryzen 5 5600X 6-Core Processor, Apple M1 Pro, etc. (any system correctly
implementing IEEE 754 [7]). Figures 1 and 2 show h(x) near x = 2.

Remark 2.1 Replacing the numerator of h with x3 − 8 causes it to underflow in a wider interval.
The higher the powers of x, the larger the interval of underflow. The width of the domain where the
denominator leads to NaNs can likewise be increased.

A common strategy for removing the NaNs (and overflow) is to bound the denominator away from
zero. A typical way to accomplish this is to define

h1(x; ϵ, δ) =

{
f(x)

g(x)+S(g(x))ϵ if 2− δ < x < 2 + δ
f(x)
g(x) otherwise

(1)

where S is the sign function and S(0) is chosen arbitrarily. Here, ϵ > 0 and δ > 0 are constants.
Although h1(x; ϵ, δ) is necessarily discontinuous, the discontinuity can be somewhat hidden by
choosing δ large enough and ϵ small enough such that ϵ ≪ |g(2 ± δ)|. See Figures 3 and 4. The
O(1) errors shown in Figures 3 and 4 are well known in numerical analysis communities (see

Preprint. Under review.

e.g., [8, 9, 10, 11, 12]) and typically addressed by refactoring code so that h does not utilize two
separate functions; instead, h would be implemented as ĥ(x) = x+ 2.

If ϵ is chosen large enough and δ is chosen small enough, then g(x) can be ignored to obtain

ĥ1(x; ϵ, δ) =

{
f(x)

S(g(x))ϵ if 2− δ < x < 2 + δ
f(x)
g(x) otherwise

(2)

for simplicity. In this case, the discontinuity can be removed by choosing δ so that g(2 ± δ) =
S(g(2± δ))ϵ. This continuous case can be written with g(x) in the conditional as

h2(x; ϵ) =

{
f(x)

S(g(x))ϵ if |g(x)| < ϵ
f(x)
g(x) otherwise

(3)

removing δ; moreover, one can write

ĥ2(x; ϵ) =

f(x)
−ϵ if − ϵ < g(x) < 0
f(x)
ϵ if 0 < g(x) < ϵ

f(x)
g(x) otherwise

(4)

in order to remove the sign function (although an arbitrary choice is still required when g(x) = 0).
See Figure 5.

3 Computing Derivatives

Analytically, f ′(x) = 2x, g′(x) = 1, and h′(x) = 1 everywhere (after removing the singularity to
reduce h(x) to x+ 2). Backpropagation will utilize

dh =

(
∂h

∂f

∂f

∂x
+

∂h

∂g

∂g

∂x

)
dx (5a)

=

(
1

g(x)

∂f

∂x
− f(x)

g(x)2
∂g

∂x

)
dx (5b)

=

(
2x

x− 2
− x2 − 4

(x− 2)2

)
dx (5c)

to compute derivatives. When 2 + γ underflows to be 2, h′(2 + γ) ≈ 4
0 − 0

0 which gives NaNs;
otherwise,

h′(2 + γ) =
4 + 2γ

γ
− (4 + 4γ + γ2)− 4

γ2
(6)

can lead to

h′(2 + γ) ≈ 4 + 2γ

γ
− (4 + 4γ)− 4

γ2
= 2 ̸= 1 (7)

when 4 + 4γ + γ2 underflows to be 4 + 4γ because γ2 ≪ 4. Alternatively, the quotient rule would
combine equation 6 into a single fraction, which has no bearing on the underflow and thus also leads
to the final result in equation 7. See Figure 6 for the results obtained using PyTorch (identical results
were obtained using Tensorflow).

To analyze the derivative of h1(x), one can rewrite equation 5b as,

dh1 =

(
2x

g1(x)
− x2 − 4

g1(x)2
g′1(x)

)
dx (8)

with

g1(x; ϵ, δ) =

{
g(x) + S(g(x))ϵ if 2− δ < x < 2 + δ

g(x) otherwise
(9)

since the numerator remains unchanged. Since S′ is identically zero almost everywhere, g′1(x) =
g′(x) = 1. Note that attempts to smooth S lead to S taking on values of zero when g is zero, defeating
the purpose of adding S(g(x))ϵ to the denominator.

2

Outside of x ∈ (2− δ, 2 + δ), the behavior of h1 matches the behavior of h; thus, we assume that δ
is chosen large enough to encompass all of the degenerate behavior with the perturbed denominator.
When 2 + γ underflows to be 2, h′

1(2 + γ) ≈ 4
S(0)ϵ − 0

ϵ2 ; otherwise,

h′
1(2 + γ) ≈ 4 + 2γ

γ + S(γ)ϵ
− (4 + 4γ)− 4

(γ + S(γ)ϵ)2
(10a)

≈ 2γ2 + (4 + 2γ)S(γ)ϵ
(γ + S(γ)ϵ)2

(10b)

when 4 + 4γ + γ2 underflows to be 4 + 4γ. Note that h′
1(2 + γ) → 2 as ϵ → 0, consistent with

equation 7 as expected; however, h′
1(2 + γ) → 4

S(γ)ϵ as γ → 0. See Figure 7 for the results obtained
using PyTorch (identical results were obtained using Tensorflow).

Remark 3.1 Although the typical approach of adding a small number to the denominator in order
to avoid NaNs and overflow leads to O(1) errors (e.g. h1(2) = 0 when h(2) = 4), backpropagation
through the perturbed formulas leads to unbounded errors (e.g. h′

1(2) = 4
S(0)ϵ when h′(2) = 1).

Unfortunately, practitioners typically choose ϵ to be as small as possible.

To analyze the derivative of h2(x), one can replace g1 with

g2(x; ϵ) =

{
S(g(x))ϵ if |g(x)| < ϵ

g(x) otherwise
(11)

in equation 8. In the region of interest where |g(x)| < ϵ, g′2(x) = 0. When 2 + γ underflows to be 2,
h′
2(2 + γ) ≈ 4

S(0)ϵ − 0
ϵ2 · 0; otherwise,

h′
2(2 + γ) =

4 + 2γ

S(γ)ϵ
(12)

whenever |g(x)| < ϵ. Note that any underflow in f is unimportant since the result is robustly divided
by ϵ2 before being multiplied by 0. Once again, h′

2(2 + γ) → 4
S(γ)ϵ as γ → 0; however, it happens

more quickly in h′
2 (than in h′

1) because the second term in equation 8 is no longer present to partially
cancel the first term (as it does in equation 10a). See Figure 8 for the results obtained using PyTorch
(identical results were obtained using Tensorflow).

4 Conclusion

As we have shown, the basic software infrastructures make the false assumption that expressions
can be evaluated in nested fashion using the chain rule when the correct order of operations requires
a cancelling of expressions before evaluating (as is taught in basic calculus when students learn
about limits). Although practitioners typically implement hacks into their codes in order to avoid
division by zero, this leads to well-known O(1) errors in the perturbed functions; unfortunately, the
derivatives of those functions can have errors that are unbounded. The community does not seem to
be concerned with these difficulties; rather, they over-embrace the modularity of the various software
frameworks believing in the correctness of the derivatives that they produce.

Although this paper addressed the problems occurring with the very simple case of division, the lack
of the ability to simplify expressions in object oriented code also causes problems with multiplication
(e.g. when 0 · ∞ should be finite), addition/subtraction (e.g. when ∞ − ∞ should be finite), and
many other operations.

Assuming that one takes precautions to avoid NaNs, it is important to consider what an erroneously
large derivative (that blows up) will do when solving inverse/control problems or training neural
networks. A large value of the derivative in one entry of a gradient causes all of the other entries to
vanish (comparatively), making the gradient erroneously point in the direction of the large derivative.
This leads to poor search directions in the optimization for first order methods, and (perhaps even
more devastatingly) a corrupted Hessian for second order methods. In turn, this undoes all of the
hard work put into designing loss functions, regularizers, etc., in hopes of finding good parameters
for a neural network.

3

5 Acknowledgments

Research supported in part by ONR N00014-19-1-2285 and ONR N00014-21-1-2771. DJ is supported
by a Stanford Graduate Fellowship.

References
[1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in neural information processing
systems, pages 8026–8037, 2019.

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[3] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, 2011.

[4] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages
675–678, 2014.

[5] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau,
Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, et al.
Theano: A python framework for fast computation of mathematical expressions. arXiv, pages
arXiv–1605, 2016.

[6] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

[7] Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008),
pages 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

[8] Michael T Heath. Scientific Computing: An Introductory Survey, Revised Second Edition.
SIAM, 2018.

[9] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[10] Richard L Burden, J Douglas Faires, and Annette M Burden. Numerical analysis. Cengage
learning, 2015.

[11] E Ward Cheney and David R Kincaid. Numerical mathematics and computing. Cengage
Learning, 2012.

[12] Kendall Atkinson. An introduction to numerical analysis. John wiley & sons, 1991.

4

http://github.com/google/jax

−100 −10−6 −10−12 −10−18 0 10−18 10−12 10−6 100

γ

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

h
(x

)

NaNs

No underflow

Numerator underflow

Both underflow

Figure 1: To understand the behavior of h(x) near x ≈ 2, we choose γ with γ ≈ 0 and evaluate
x = 2 + γ before subsequently evaluating h(x). The plot shows values obtained for h(x) with γ
plotted on a log scale. The green points are consistent with the straight line h(2 + γ) = γ + 4
as expected. The yellow points indicate values of γ where the numerator underflows, i.e. where
x2 = 4 + 4γ + γ2 evaluates to 4 + 4γ because γ2 ≪ 4 using double precision. With a numerator
of 4 + 4γ − 4 = 4γ and a denominator of 2 + γ − 2 = γ, the yellow points are consistent with
h(2 + γ) = 4. The empty space near γ = 0 is where the denominator also underflows, i.e. when
x = 2 + γ evaluates to 2 because γ ≪ 2 using double precision. These values of γ produce NaNs.
See also Figure 2.

5

−100 −10−6 −10−12 −10−18 0 10−18 10−12 10−6 100

γ

−100

−10−6

−10−12

−10−18

0

10−18

10−12

10−6

100

h
(x

)
−

4

NaNs

No underflow

Numerator underflow

Both underflow

Figure 2: Same data as in Figure 1, except that the leading digit of 4 is removed from all of the
data. Plotting the dependent axis on a log scale elucidates the linearity in the green region and the
incorrect flatness in the yellow region. In addition, note the small errors in the linearity of the green
region near the boundary with the yellow region. These errors are caused by x2 = 4 + 4γ + γ2

evaluating to 4 + 4γ + αγ2 as information in γ2 ≪ 4 is partially lost as it begins to underflow. Note
that 0 < α < 1 is what one would expect when some of γ2 is truncated; however, α can be larger
than 1 when rounding up before truncating. Generally, one would expect 1 < α < 2 when rounding
up, since the largest increase occurs when 2−p is rounded up to 2−p+1.

6

−100 −10−6 −10−12 −10−18 0 10−18 10−12 10−6 100

γ

0

1

2

3

4

5

h
1
(x

)

No underflow

Numerator underflow

Both underflow

Figure 3: Plot of h1(2 + γ) with ϵ = 10−8 and δ = 10−4, where δ is chosen large enough to put the
discontinuity in the green region, well-separated from the issues with underflow we wish to address.
The black points indicate data where h1 is identical to h. Although the perturbed denominator
removes the NaNs in the red region, h1 is identically zero there and thus inconsistent with x + 2;
moreover, the yellow and green points are also incorrectly perturbed away from x+ 2 towards zero.
These O(1) errors are difficult to avoid without refactoring the code. Note that the γ = 0 data point
is colored green because 2 + γ does not technically underflow (even though 2 + γ evaluates to 2,
and thus γ = 0 behaves similarly to the red points); in addition, the gap around γ = 0 is due to the
minimum |γ| being 10−20 (besides γ = 0). See also Figure 4.

−100 −10−6 −10−12 −10−18 0 10−18 10−12 10−6 100

γ

−100

−10−6

−10−12

−10−18

0

10−18

10−12

10−6

100

h
1
(x

)
−

4

No underflow

Numerator underflow

Both underflow

Figure 4: Same data as Figure 3, except that the leading digit of 4 is removed and the dependent axis
uses a log scale. This elucidates the linearity in the black region and the discontinuity between the
black and green regions.

7

−100 −10−6 −10−12 −10−18 0 10−18 10−12 10−6 100

γ

0

1

2

3

4

5

h
2
(x

)

No underflow

Numerator underflow

Both underflow

Figure 5: Plot of h2(2 + γ) with ϵ = 10−4; in other words, a plot of ĥ1(2 + γ) with ϵ = 10−4

chosen to match δ = 10−4 for continuity. Unlike in Figure 3 where g(x) slowly vanishes providing
for a gradual transition between the black and green regions, the transition is more abrupt here even
though the function is continuous; however, a more fair comparison would use ϵ = 10−8 in this
figure, although that would place the transition in the yellow region (which we would like to avoid
for the sake of exposition).

−100 −10−6 −10−12 −10−18 0 10−18 10−12 10−6 100

γ

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

h
′ (
x

)

NaNs

No underflow

Numerator underflow

Both underflow

Figure 6: Although h′(x) = 1 identically, a value of 2 is obtained when 4 + 4γ + γ2 underflows to
be 4 + 4γ because γ2 ≪ 4. In addition, the errors near the boundary of the green region are caused
by 4 + 4γ + γ2 partially underflowing to 4 + 4γ + αγ2; as can be seen in equation 6, this leads
to a derivative that looks like 2 − α. Recall (from Figure 2) that one would expect 0 < α < 1 for
rounding down and 1 < α < 2 for rounding up.

8

−100 −10−6 −10−12 −10−18 0 10−18 10−12 10−6 100

γ

−4

−3

−2

−1

0

1

2

3

4

h
′ 1
(x

)

×108

No underflow

Numerator underflow

Both underflow

Figure 7: As discussed before and after equation 10, h′
1 has spurious derivative values on the order

of 4
ϵ which is 4 × 108 for ϵ = 10−8. Note that S(g(2 + γ)) = S(0) in the red region where 2 + γ

underflows to 2. This means that all of the red points will agree in sign based on the arbitrary choice
of S(0); obviously, we chose S(0) = 1.

−100 −10−6 −10−12 −10−18 0 10−18 10−12 10−6 100

γ

−40000

−30000

−20000

−10000

0

10000

20000

30000

40000

h
′ 2
(x

)

No underflow

Numerator underflow

Both underflow

Figure 8: As discussed after equation 12, h′
2 has spurious derivative values on the order of 4

ϵ which
is 4× 104 for ϵ = 10−4; moreover, the derivatives blow up immediately (instead of gradually, as in
Figure 7).

9

	Introduction
	A Trivial Example
	Computing Derivatives
	Conclusion
	Acknowledgments

