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Regularization is used to avoid overfitting when training a neural network; unfortunately, this reduces the
attainable level of detail hindering the ability to capture high-frequency information present in the training
data. Even though various approaches may be used to re-introduce high-frequency detail, it typically does not
match the training data and is often not time coherent. In the case of network inferred cloth, these sentiments
manifest themselves via either a lack of detailed wrinkles or unnaturally appearing and/or time incoherent
surrogate wrinkles. Thus, we propose a general strategy whereby high-frequency information is procedurally
embedded into low-frequency data so that when the latter is smeared out by the network the former still
retains its high-frequency detail. We illustrate this approach by learning texture coordinates which when
smeared do not in turn smear out the high-frequency detail in the texture itself but merely smoothly distort it.
Notably, we prescribe perturbed texture coordinates that are subsequently used to correct the over-smoothed
appearance of inferred cloth, and correcting the appearance from multiple camera views naturally recovers
lost geometric information.
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1 INTRODUCTION
Since neural networks are trained to generalize to unseen data, regularization is important for reduc-
ing overfitting, see e.g. [Goodfellow et al. 2016; Scholkopf and Smola 2001]. However, regularization
also removes some of the high variance characteristic of much of the physical world. Even though
high-quality ground truth data can be collected or generated to reflect the desired complexity of
the outputs, regularization will inevitably smooth network predictions. Rather than attempting to
directly infer high-frequency features, we alternatively propose to learn a low-frequency space in
which such features can be embedded.
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(a) inferred cloth (b) texture sliding

Fig. 1. Texture coordinate perturbations (texture sliding) reduce shape inference errors: ground truth (blue),
prediction (orange).

We focus on the specific task of adding high-frequency wrinkles to virtual clothing, noting that
the idea of learning a low-frequency embedding may be generalized to other tasks. Because cloth
wrinkles/folds are high-frequency features, existing deep neural networks (DNNs) trained to infer
cloth shape tend to predict overly smooth meshes [Alldieck et al. 2019a; Daněřek et al. 2017; Guan
et al. 2012; Gundogdu et al. 2019; Jin et al. 2020; Lahner et al. 2018; Natsume et al. 2019; Patel et al.
2020; Santesteban et al. 2019; Wang et al. 2018]. Rather than attempting to amend such errors
directly, we perturb texture so that the rendered cloth mesh appears to more closely match the
ground truth. See Figure 1. Then given texture perturbations from at least two unique camera views,
3D geometry can be accurately reconstructed [Hartley and Sturm 1997] to recover high-frequency
wrinkles. Similarly, for AR/VR applications, correcting visual appearance from two views (one for
each eye) is enough to allow the viewer to accurately discern 3D geometry.

Our proposed texture coordinate perturbations are highly dependent on the camera view. Thus,
we demonstrate that one can train a separate texture sliding neural network (TSNN) for each of
a finite number of cameras laid out into an array and use nearby networks to interpolate results
valid for any view enveloped by the array. Although an approach similar in spirit might be pursued
for various lighting conditions, this limitation is left as future work since there are a great deal of
applications where the light is ambient/diffuse/non-directional/etc. In such situations, this further
complication may be ignored without significant repercussion.

2 RELATEDWORK
Cloth: While physically-based cloth simulation has matured as a field over the last few decades

[Baraff and Witkin 1998; Baraff et al. 2003; Bridson et al. 2002, 2003; Selle et al. 2008], data-driven
methods are attractive for many applications. There is a rich body of work in reconstructing cloth
from multiple views or 3D scans, see e.g. [Bradley et al. 2008b; Franco et al. 2006; Vlasic et al.
2008]. More recently, optimization-based methods have been used to generate higher resolution
reconstructions [Huang et al. 2015; Pons-Moll et al. 2017; Wu et al. 2012; Yang et al. 2016]. Some
of the most interesting work focuses on reconstructing the body and cloth separately [Bălan and
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Black 2008; Neophytou and Hilton 2014; Yang et al. 2018; Zhang et al. 2017]. With advances in deep
learning, one can aim to reconstruct 3D cloth meshes from single views. A number of approaches
reconstruct a joint cloth/body mesh from a single RGB image [Alldieck et al. 2019a,b; Jiang et al.
2020; Natsume et al. 2019; Onizuka et al. 2020; Saito et al. 2019, 2020], RGB-D image [Yu et al. 2019],
or video [Alldieck et al. 2018a,b; Habermann et al. 2019; Xu et al. 2018]. To reduce the dimensionality
of the output space, DNNs are often trained to predict the pose/shape parameters of human body
models such as SCAPE [Anguelov et al. 2005] or SMPL [Loper et al. 2015] (see also [Pavlakos
et al. 2019]). [Habermann et al. 2019; Natsume et al. 2019; Varol et al. 2018] leverage predicted
pose information to infer shape. When only the garment shape is predicted, a number of recent
works output predictions in UV space to represent geometric information as pixels [Daněřek et al.
2017; Jin et al. 2020; Lahner et al. 2018], although others [Gundogdu et al. 2019; Patel et al. 2020;
Santesteban et al. 2019] define loss functions directly in terms of the 3D cloth vertices.

Wrinkles and Folds: Cloth realism can be improved by introducing wrinkles and folds. In the
graphics community, researchers have explored both procedural and data-driven methods for
generating wrinkles [De Aguiar et al. 2010; Guan et al. 2012; Hahn et al. 2014; Müller and Chentanez
2010; Rohmer et al. 2010; Wang et al. 2010]. Other works add real-world wrinkles as a postprocessing
step to improve smooth captured cloth: [Popa et al. 2009] extracts the edges of cloth folds and
then applies space-time deformations, [Robertini et al. 2014] solves for shape deformations directly
by optimizing over all frames of a video sequence. [Buffet et al. 2019] improves cloth realism
by untangling multiple garment layers, thereby producing a collision-free state that is ready for
animation. Recently, [Lahner et al. 2018] used a conditional Generative Adversarial Network [Mirza
and Osindero 2014] to generate normal maps as proxies for wrinkles on captured cloth.

Geometry: More broadly, deep learning on 3D meshes falls under the umbrella of geometric deep
learning, which was coined by [Bronstein et al. 2017] to characterize learning in non-Euclidean
domains. [Scarselli et al. 2008] was one of the earliest works in this area and introduced the notion
of a Graph Neural Network (GNN) in relation to CNNs. Subsequent works similarly extend the
CNN architecture to graphs and manifolds [Boscaini et al. 2016; Maron et al. 2017; Masci et al.
2015; Monti et al. 2017]. [Kostrikov et al. 2018] introduces a latent representation that explicitly
incorporates the Dirac operator to detect principal curvature directions. [Hertz et al. 2020; Tan et al.
2018] train mesh generative models to infer novel meshes outside an original dataset. Returning to
the specific application of virtual cloth, [Jin et al. 2020] embeds a non-Euclidean cloth mesh into a
Euclidean pixel space, making it possible to directly use CNNs to make non-Euclidean predictions.

Texture: In the computer graphics community, textures have historically been used to capture
both geometric and material details lost by using simplified models [Foley et al. 1996; Marschner
and Shirley 2015], which is similar in spirit to our approach. Though, to the best of our knowledge,
we are the first to propose learning texture coordinate perturbations to facilitate the accurate
reconstruction of lost geometric details. For completeness, we briefly note a few works that use
learning for texture synthesis and/or style transfer [Dumoulin et al. 2016; Gatys et al. 2015, 2016;
Gupta et al. 2017; Johnson et al. 2016; Sanakoyeu et al. 2018].

3 METHODS
We define texture sliding as the changing of texture coordinates on a per-camera basis such that
any point which is visible from some stereo pair of cameras can be triangulated back to its ground
truth position. Other stereo reconstruction techniques can also be used in place of triangulation
because the images we generate are consistent with the ground truth geometry. See e.g. [Bradley
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et al. 2008a; Hartley and Sturm 1997; Seitz et al. 2006]. Thus, texture sliding recovers high-frequency
3D geometry embedded in 2D material space perturbations.

3.1 Per-Vertex Discretization
Since the cloth mesh is discretized into vertices and triangles, we take a per-vertex, not a per-point,
approach to texture sliding. Our proposed method (see Section 4.1) computes per-vertex texture
coordinates on the inferred cloth that match those of the ground truth as seen by the camera
under consideration. Then during 3D reconstruction, barycentric interpolation is used to find the
subtriangle locations of the texture coordinates corresponding to ground truth cloth vertices. This
assumes linearity, which is only valid when the triangles are small enough to capture the inherent
nonlinearities in a piecewise linear sense; moreover, folds and wrinkles can create significant
nonlinearity. See Figure 2.

Fig. 2. Consider an extreme case, where the inferred cloth has a quite large triangle (shown in red). That
triangle should encompass the nonlinear texture region outlined in yellow (shown in pattern space). Note: the
yellow curve was generated by sampling the ground truth cloth’s texture coordinates along the projected
edges of the red triangle. The linearity assumption implied by barycentric interpolation instead uses the
region outlined in green.

3.2 Occlusion Boundaries
Accurate 3D reconstruction requires that a vertex of the ground truth mesh be visible from at least
two cameras and that camera projections of the vertex to the inferred cloth exist and are valid.
However, occlusions can derail these assumptions.
First, consider things from the standpoint of the inferred cloth. For a given camera view, some

inferred cloth triangles will not contain any visible pixels, and we denote a vertex as occluded
when none of its incident triangles contain any visible pixels. Although we do not assign perturbed
texture coordinates to occluded vertices (i.e. they keep their original texture coordinates, or a
perturbation of zero), we do aim to keep the texture coordinate perturbation function smooth
(see Section 4.2). In addition, there will be so called non-occluded vertices in the inferred cloth
that do not project to visible pixels of the ground truth cloth. This often occurs near silhouette
boundaries where the inferred cloth silhouette is sometimes wider than the ground truth cloth
silhouette. These vertices are also treated as occluded, similar to those around the back side of the
cloth behind the silhouette, essentially treating some extra vertices near occlusion boundaries as
also being occluded. See Figure 3a.
Next, consider things from the standpoint of the ground truth cloth. For example, consider the

case where all the cameras are in the front, and vertices on the back side of the ground truth cloth
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are not visible from any camera. The best one can do in reconstructing these occluded vertices is to
use the inferred cloth vertex positions; however, care should be taken near occlusion boundaries to
smoothly taper between our texture sliding 3D reconstruction and the inferred cloth prediction.
A simple approach is to extrapolate/smooth the geometric difference between our texture sliding
3D reconstruction and the inferred cloth prediction to occluded regions of the mesh. Once again,
the definition of occluded vertices needs to be broadened for silhouette consideration. Not only
will vertices not visible from at least two cameras have to be considered occluded, but vertices that
don’t project to the interior of an inferred cloth triangle with valid texture coordinate perturbations
will also have to be considered occluded. See Figure 3b.

(a) (b)

Fig. 3. The method discussed in Section 4.1 can fail near silhouettes of the inferred and ground truth cloth
meshes, in which case smoothness assumptions are used (see Section 4.2). In (a), inferred triangles with at
least one vertex falling outside the silhouette of the ground truth mesh are colored red. In (b), ground truth
triangles with at least one vertex falling outside the silhouette of the inferred mesh are colored blue.

4 DATASET GENERATION
Let 𝐶 = {𝑋,𝑇 } be a cloth triangulated surface with 𝑛 vertices 𝑋 ∈ R3𝑛 and texture coordinates
𝑇 ∈ R2𝑛 . We assume that mesh connectivity remains fixed throughout. The ground truth cloth
mesh 𝐶𝐺 (𝜃 ) = {𝑋𝐺 (𝜃 ),𝑇𝐺 } depends on the pose 𝜃 . Given a pre-trained DNN (we use the network
from [Jin et al. 2020]), the inferred cloth 𝐶𝑁 (𝜃 ) = {𝑋𝑁 (𝜃 ),𝑇𝐺 } is also a function of the pose 𝜃 . Our
objective is to replace the ground truth texture coordinates 𝑇𝐺 with perturbed texture coordinates
𝑇𝑁 (𝜃, 𝑣), i.e. to compute 𝐶 ′

𝑁
(𝜃, 𝑣) = {𝑋𝑁 (𝜃 ),𝑇𝑁 (𝜃, 𝑣)} where 𝑇𝑁 (𝜃, 𝑣) depends on both the pose 𝜃

and the view 𝑣 . Even though 𝑇𝑁 (𝜃, 𝑣) is in principle valid for all 𝑣 using interpolation (see Section
6.3), training data𝑇𝑁 (𝜃, 𝑣𝑝 ) is only required for a finite number of camera views 𝑣𝑝 . For each camera
𝑝 , we also only require training data for finite number of poses 𝜃𝑘 , i.e. we require𝑇𝑁 (𝜃𝑘 , 𝑣𝑝 ), which
is computed from 𝑇𝐺 using 𝑋𝐺 (𝜃𝑘 ), 𝑋𝑁 (𝜃𝑘 ), and 𝑣𝑝 .

4.1 Texture Coordinate Projection
We project texture coordinates to the inferred cloth vertices 𝑋𝑁 (𝜃𝑘 ) from the ground truth cloth
mesh 𝐶𝐺 (𝜃𝑘 ) using ray intersection. For each inferred cloth vertex in 𝑋𝑁 (𝜃𝑘 ), we cast a ray from
camera 𝑝’s aperture through the vertex and find the first intersection with the ground truth mesh
𝐶𝐺 (𝜃𝑘 ); subsequently, 𝑇𝐺 is barycentrically interpolated to the point of intersection and assigned
to the inferred cloth vertex as its𝑇𝑁 (𝜃𝑘 , 𝑣𝑝 ) value. See Algorithm 1 and Figure 4. Rays are only cast
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for inferred cloth vertices that have at least one incident triangle with a nonzero area subregion
visible to camera 𝑝 . Also, a ground truth texture coordinate value is only assigned to an inferred
cloth vertex when the point of intersection with the ground truth mesh is visible to camera 𝑝 . We
store and learn texture coordinate displacements 𝑑𝑣𝑝 (𝜃𝑘 ) = 𝑇𝑁 (𝜃𝑘 , 𝑣𝑝 ) −𝑇𝐺 . After this procedure,
any remaining vertices of the inferred cloth that have not been assigned 𝑑𝑣𝑝 (𝜃𝑘 ) values are treated
as occluded and handled via smoothness considerations as discussed in Section 4.2.

Algorithm 1: Ray Intersection
1 for vertex 𝑣 in inferred mesh 𝑋𝑁 (𝜃𝑘 ) do
2 𝑟 ← ray(cameraAperture(𝑝), 𝑣);
3 𝑥intersection← firstIntersection(𝑟 , ground truth mesh 𝐶𝐺 (𝜃𝑘 ));
4 𝑇𝑁 (𝜃𝑘 , 𝑣𝑝 ) (𝑣) ← barycentricInterpolation(𝑥intersection, 𝐶𝐺 (𝜃𝑘 ), 𝑇𝐺 );

Fig. 4. Illustration of the ray intersection method for transferring texture coordinates to the inferred cloth
from the ground truth cloth. Texture coordinates for the inferred cloth vertex (red cross) are interpolated
from the ground truth mesh to the point of ray intersection (red circle).

4.2 Occlusion Handling
Some vertices of the inferred cloth mesh remain unassigned with 𝑑𝑣𝑝 (𝜃𝑘 ) = 0 after executing
the algorithm outlined in Section 4.1. This creates a discontinuity in 𝑑𝑣𝑝 (𝜃𝑘 ) which excites high
frequencies that require a more complex network architecture to capture. In order to alleviate
demands on the network, we smooth 𝑑𝑣𝑝 (𝜃𝑘 ) as follows. First, we use the Fast Marching Method
on triangulated surfaces [Kimmel and Sethian 1998] to generate a signed distance field. Then, we
extrapolate 𝑑𝑣𝑝 (𝜃𝑘 ) normal to the distance field into the unassigned region, see e.g. [Osher and
Fedkiw 2002]. Finally, a bit of averaging can be used to provide smoothness, while keeping the
assigned values of 𝑑𝑣𝑝 (𝜃𝑘 ) unchanged. Alternatively, we solve a Poisson equation as in [Cong et al.
2015] while using the assigned 𝑑𝑣𝑝 (𝜃𝑘 ) as Dirichlet boundary conditions.
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4.3 Topological Considerations
There are some edge cases that require additional topological consideration. In particular, the
collar, sleeves, and waist are areas where a ray cast to an inferred cloth vertex can intersect with a
back-facing triangle on the inside of the ground truth shirt. We aim to define texture coordinates on
inferred cloth vertices so that barycentric interpolation can be used to find the texture coordinates
of a ground truth vertex for 3D reconstruction. However, mixing texture coordinates from the
inside and outside of the shirt in a single triangle causes dramatic interpolation error. In fact, as
shown in Figure 2, large errors may occur for any triangle that mixes texture coordinates from
geodesically far-away regions. Thus, we omit such triangles from consideration by omitting a
vertex from any edge that connects two geodesically far-away regions.

As a further improvement to our method, one can treat the inside and outside of the shirt as
separate meshes, applying texture sliding twice and training two separate networks; moreover, one
may take a patch-based approach, applying TS and training a TSNN for each (slightly overlapping)
patch of the shirt.

4.4 Smoothness Considerations
When training a neural network, more predictable results are obtained when the inferred cloth
vertex data is smoother. Thus, there exists tradeoffs between smoothness and accuracy when
assigning texture coordinates. An edge that connects two geodesically far-away regions introduces
a jump discontinuity in the texture coordinates leading to high frequencies in the ground truth
data that place increased demands on the network. Although subdivision adds degrees of freedom
along such edges to better sample the high frequency, it is often better to delete such edges entirely
by removing one of the edge’s vertices. Recall that any vertex not assigned a ground truth texture
coordinate is instead defined via smoothness considerations (see Section 4.2) reducing demands on
the network.

5 NETWORK ARCHITECTURE
A separate texture sliding neural network (TSNN) is trained for each camera 𝑝; thus, we drop the
𝑣𝑝 notation in this section. The loss is defined over all poses 𝜃𝑘 in the training set

L =
∑︁
𝜃𝑘




𝑑 (𝜃𝑘 ) − 𝑑 (𝜃𝑘 )



2

(1)

to minimize the difference between the desired displacements 𝑑 (𝜃𝑘 ) and predicted displacements
𝑑 (𝜃𝑘 ). The inferred cloth data we chose to correct are predictions of the T-shirt meshes from [Jin
et al. 2020], each of which contains about 3,000 vertices. The dataset spans about 10,000 different
poses, which were sampled from a uniformly random distribution over the body joints’ natural
range of motion. The cloth mesh was generated from a scanned garment and simulated in a physics
engine [phy [n.d.]] and includes texture coordinates for each vertex. To improve the resolution,
we up-sampled each cloth mesh by subdividing each triangle into four subtriangles. Notably, our
texture sliding approach can be used to augment the results of any dataset for which ground truth
and inferred training examples are available. Moreover, it is trivial to increase the resolution of any
such dataset simply by subdividing triangles. Note that perturbations of the subdivided geometry
are unnecessary, as we merely desire more sample points (to address Figure 2). Finally, we applied
an 80-10-10 training-validation-test set split.
Similar to [Jin et al. 2020], the displacements 𝑑 (𝜃𝑘 ) are stored as pixel-based cloth images

for the front and back sides of the T-shirt, though we still output per-vertex texture coordinate
displacements in UV space. See Figure 5 for an overview of the network architecture. Given input
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joint transformation matrices of shape 1 × 1 × 90, TSNN applies a series of transpose convolution,
batch normalization, and ReLU activation layers to upsample the input to 512 × 512 × 4. The first
two dimensions of the output tensor represent the predicted displacements for the front side of the
T-shirt, and the remaining two dimensions represent those for the back side.

Fig. 5. Texture sliding neural network (TSNN) architecture.

6 EXPERIMENTS
In Section 6.1, we quantify the data generation approach of Section 4 and highlight the advantages
of mesh subdivision for up-sampling. In Section 6.2, we evaluate the predictions made by our
trained texture sliding neural network (TSNN). In Section 6.3, we demonstrate the interpolation of
texture sliding results to novel views between a finite number of cameras. Finally, in Section 6.4,
we use multi-view texture sliding to reconstruct 3D geometry.

6.1 Dataset Generation and Evaluation
We aim to have the material coordinates of the cloth be in the correct locations as viewed by
multiple cameras, so that the material can be accurately 3D reconstructed with point-wise accuracy.
As such, our error metric is a bit more stringent than that commonly used because our aim is to
reproduce the actual material behavior, not merely to mimic its look (e.g. , by perturbing normal
vectors to create shading consistent with wrinkles in spite of the cloth being smooth, as in [Lahner
et al. 2018]). In order to elucidate this, consider a two-step approach where one first approximates
a smooth cloth mesh and then perturbs that mesh to add wrinkles (similar to [Santesteban et al.
2019]). In order to preserve area and achieve the correct material behavior, material in the vicinity
of a newly forming wrinkle should slide laterally towards that wrinkle as it is formed. Merely
non-physically stretching the material in order to create a wrinkle may look plausible, but does not
admit the correct material behavior. In fact, the texture would be unrealistically stretched as well,
although this is less apparent visually when using simple textures.

Since texture coordinates provide a proxy surface parameterization for material coordinates, we
measure texture coordinate errors in a per-pixel fashion comparing between the ground truth and
inferred cloth at the center of each pixel. Figure 6a shows results typical for cloth inferred using
the network from [Jin et al. 2020], and Figure 6b shows the highly improved results obtained on
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the same inferred geometry using our texture sliding approach (with 1 level of subdivision). Note
that the vast majority of the errors in Figure 6b occur near the wrinkles where the nonlinearities
illustrated in Figure 2 are most prevalent. In Figure 6c, we deform the vertices of the inferred cloth
mesh so that they lie exactly on the ground truth mesh in order to mimic a two-step approach (as
discussed above). Note how our error metric captures the still rather large errors in the material
coordinates (and thus cloth vertex positions) in spite of the mesh in Figure 6c appearing to have the
same wrinkles and folds as the ground truth mesh. Figure 7 compares the local compression and
extension energies of the ground truth mesh (Figure 7a), the inferred cloth mesh (Figure 7b), and
the result of this two-step process (Figure 7c). In spite of the untextured mesh in Figure 7c bearing
visual similarity to the ground truth in Figure 7a, it still has rather large errors in deformation
energy.

(a) (b) (c)

Fig. 6. Per-pixel texture coordinate errors before (a) and after (b) applying texture sliding to the inferred cloth
output by the network of [Jin et al. 2020]. The result of a two-step process (c) may well match the ground
truth in a visual sense, whilst still having quite large errors in material coordinates. Blue = 0, red ≥ 0.04.

Figure 8 illustrates the efficacy of subdividing the cloth mesh to get more samples for texture
sliding. The particular ground truth cloth wrinkle shown in Figure 8e is not captured by the inferred
cloth geometry shown in Figure 8a. The texture sliding result shown in Figure 8b better represents
the ground truth cloth. Figures 8c and 8d show how subdividing the inferred cloth mesh one and
two times (respectively) progressively alleviates errors emanating from the linearity assumption
illustrated in Figure 2. Table 1 shows quantitative results comparing the inferred cloth to texture
sliding with and without subdivision.

Table 1. Per-pixel square root of mean squared error (SqrtMSE) for the entire dataset.

Method SqrtMSE (×10−3)
[Jin et al. 2020] 24.496 ± 6.9536

TS 5.2662 ± 2.2320
TS + subdivision 3.5645 ± 1.6617
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(a) (b) (c)

Fig. 7. Local compression (blue) and extension (red) energies for a sample pose, comparing the ground truth
cloth (a), the inferred cloth (b), and the result of a two-step process (c). In spite of the cloth mesh in (c) bearing
visual resemblance to the ground truth in (a), it still has quite erroneous deformation energies.

(a) (b) (c) (d) (e)

Fig. 8. As the inferred cloth mesh (a) is subdivided, texture sliding (b-d) moves the appearance of the inferred
mesh closer to the ground truth (e). This is because mesh subdivision reduces barycentric interpolation errors
from the ray intersection method discussed in Section 4.

6.2 Network Training and Inference
The network was trained using the Adam optimizer [Kingma and Ba 2014] with a 10−3 learning rate
in PyTorch [Paszke et al. 2017]. As mentioned earlier, we subdivided the mesh triangles once. Figure
9 shows a typical prediction on a test set example, including the per-pixel errors in predicted texture
coordinates. See the supplemental material for additional test set example predictions. While the
TSNN is able to recover the majority of the shirt, it struggles near wrinkles. Figure 10 highlights a
particular wrinkle comparing the inferred cloth (Figure 10a) and the results of the TSNN before
(Figure 10b) and after (Figure 10c) subdivision to the ground truth (Figure 10d). Table 2 shows
quantitative results comparing the inferred cloth to TSNN results with and without subdivision.

6.3 Interpolating to Novel Views
Given a finite number of camera views 𝑣𝑝 , one can specify a new view enveloped by the array
using a variety of interpolation methods. For the sake of demonstration, we take a simple approach
assuming that one can interpolate via 𝑣 =

∑
𝑝 𝑤𝑝𝑣𝑝 , and then use these same weights to compute

𝑇𝑁 (𝜃𝑘 , 𝑣) =
∑︁
𝑝

𝑤𝑝𝑇𝑁 (𝜃𝑘 , 𝑣𝑝 ) (2)
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(a) 𝐶 ′
𝑁

(b) 𝐶 ′
𝑁

(c) 𝐸𝑟𝑟𝑜𝑟 (𝐶 ′
𝑁
,𝐶𝐺 )

Fig. 9. A typical test set example prediction. The per-pixel errors are shown in (c) (blue = 0, red ≥ 0.04).

(a) (b) (c) (d)

Fig. 10. The results of the TSNN before (b) and after (c) subdivision, as compared to the ground truth (d). In
spite of Table 2, some wrinkles are better resolved by the TSNN after subdivision. The inferred mesh with
ground truth texture coordinates is shown in (a).

Table 2. Per-pixel SqrtMSE for the test set. Inspite of Table 1 demonstrating that subdivision improves the
ground truth TS data, the improvements are not uniformly realized by the TSNN (which we discuss in
Appendix C).

Network SqrtMSE (×10−3)
[Jin et al. 2020] 24.871 ± 7.0613

TSNN 13.335 ± 4.2924
TSNN + subdivision 13.591 ± 4.5194

This same equation is also used for 𝑇𝑁 (𝜃𝑘 , 𝑣). Figure 11 shows the results obtained by linearly
interpolating between two camera views. Note how the largest errors appear near areas occluded
by wrinkles, where one (or both) of the cameras has no valid texture sliding results and instead uses
the inferred cloth textures. This can be alleviated by using more cameras placed closer together.
Figure 12 quantifies these results for the inferred cloth 𝐶𝑁 (𝜃𝑘 ), texture sliding 𝐶 ′𝑁 (𝜃𝑘 , 𝑣), and the
results of the TSNN 𝐶 ′

𝑁
(𝜃𝑘 , 𝑣). In Figure 13, we repeat these comparisons, except using bilinear

interpolation between four camera views.
Interpolating between two cameras, each with TS or TSNN data, has the effect of following a

straight-line path. However, by choosing the camera array and subsequent interpolation carefully
one can interpolate along curved paths. For example in Figure 14, one can interpolate between the
12 cameras (represented by blue dots) in order to follow the curved camera path.
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Fig. 11. Given two camera views (far left and far right images), texture sliding can be linearly interpolated to
novel views between them. The top row shows per-pixel errors (blue = 0, red ≥ 0.04), and the bottom row
shows the cloth from a fixed front-facing view to illustrate how the interpolated texture changes as a function
of the chosen novel view.

Fig. 12. Per-pixel SqrtMSE for interpolating between two cameras (using a test set example). Note that the
inferred cloth does not use any view based information, but that our error metric does depend on the view.

6.4 3D Reconstruction
In order to reconstruct the 3D position of a vertex of the ground truth mesh, we take the usual
approach of finding rays that pass through that vertex and the camera aperture for a number of
cameras. Then given at least two rays, one can triangulate a 3D point that is minimal distance from
all the rays. We can do this without solving the typical image to image correspondence problem
because we know the ground truth texture coordinates for any given vertex. Thus, we merely have
to find the ray that passes through the camera aperture and the ground truth texture coordinate for
the vertex under consideration.
To find a ground truth texture coordinate on a texture corrected inferred cloth mesh 𝐶 ′

𝑁
(𝜃𝑘 , 𝑣),

or 𝐶 ′
𝑁
(𝜃𝑘 , 𝑣), we first find the triangle containing that texture coordinate. This can be done quickly

by using a hierarchical bounding box structure where the base level boxes around each triangle
are defined using the min/max texture coordinates at the three vertices. Then one can write the
barycentric interpolation formula that interpolates the triangle vertex texture coordinates to obtain
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(a) 𝐶𝑁 (𝜃𝑘 ) (b) 𝐶 ′
𝑁
(𝜃𝑘 , 𝑣) (c) 𝐶 ′

𝑁
(𝜃𝑘 , 𝑣)

Fig. 13. Per-pixel SqrtMSE for interpolating between four cameras (one at each corner of the square). The
pose 𝜃𝑘 is the same as in Figure 12, which plots the values along the bottom edge of the square.

Fig. 14. Let the red dot represent the center of the cloth mesh. One can interpolate between the 12 cameras
(blue dots) on the trapezoid in order to follow the curved camera path.

the given ground truth texture coordinate, and subsequently invert the matrix to solve for the
weights. These weights determine the sub-triangle position of the vertex under consideration
(taking care to note that different answers are obtained in 3D space versus screen space, since the
camera projection is nonlinear). Figure 15 shows the 3D reconstruction of a test set example using
texture sliding (Figure 15c) and the TSNN (Figure 15d). Figure 16 compares the per-pixel errors and
local compression/extension energies of Figures 15c and 15d.

7 DISCUSSION AND FUTUREWORK
There are many disparate applications for clothing including for example video games, AR/VR,
Hollywood special effects, virtual try-on and shopping, scene acquisition and understanding, and
even bullet proof vests and soft armor. Various scenarios define accuracy or fidelity in vastly different
ways. So while it is typical to state that one cares about more than just the visual appearance
(or “graphics”), often those aiming for predictive capability still make concessions. For example,
wherein [Santesteban et al. 2019] proposes a network that well predicts wrinkles mapped to new
body types, the discussion in [Lahner et al. 2018] implies that the horizontal wrinkles predicted by
[Santesteban et al. 2019] are more characteristic of inaccurate physical simulation than real-world
behavior. Instead, [Lahner et al. 2018] strives for more vertical wrinkles to better match their data,
but they accomplish this by predicting lighting to match an image while accepting overly smooth
geometry. And as we have shown in Figure 7c, predicting the correct geometry still allows for
rather large errors in the deformation (see [Geng et al. 2020]).

In light of this, we state the problem of most interest to us: Our aim is to study the efficacy of using
deep neural networks to aid in the modeling of material behavior, especially for those materials for
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(a) (b)

(c) (d)

Fig. 15. Comparison of the ground truth cloth (a) and inferred cloth (b) to the 3D reconstructions obtained
using texture sliding (c) and the TSNN (d). To remove reconstruction noise generated by network inference
errors in (d), we used the physics-based postprocess from [Geng et al. 2020]; although, there are many other
smoothing options in the literature that one might also consider.

which predictive methods do not currently exist because of various unknowns including friction,
material parameters (for cloth and body), etc. Given this goal, we focus on the accurate prediction
of material coordinates, which are a super set of deformation, geometry, lighting, visual plausibility,
etc.
As demonstrated by the remarkably accurate 3D reconstruction in Figure 15c (see 16a), our

approach to encoding high frequency wrinkles into lower frequency texture coordinates (i.e. texture
sliding) works quite well. It can be used as a post-process to any existing neural network to capture
lost details (as long as ground truth and inferred training examples are available); moreover,
we showed that trivial subdivision could be used to increase the sampling resolution to limit
linearization artifacts. The main drawback of our approach is that it relies on triangulation or
multi-view stereo in order to construct the final 3D geometry, although this step is not required
for AR/VR applications. One needs to take care when training the texture sliding neural network
(TSNN) since inference errors can cause reconstruction noise. Thus, as future work, we plan on
experimenting with the network architecture, the size of the image used in the CNN, the smoothing
methods near occlusion boundaries, the amount of subdivision, etc. It would also be interesting to
consider more savvy multiview 3D reconstruction methods (particularly ones that employ DNNs;
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(a) (b)

Fig. 16. Per-pixel errors (top) and local compression/extension energies (bottom) for Figure 15c (a) and Figure
15d (b).

then, one might train the whole process end-to-end). In addition, as cloth data becomes increasingly
available, we would like to extend our method to a variety of garment types.
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