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ABSTRACT
Cartoon-style pictures can be seen almost everywhere in our daily
life. Numerous applications try to deal with cartoon pictures, a
dataset of cartoon pictures will be valuable for these applications.
In this paper, we first present ToonNet: a cartoon-style image recog-
nition dataset. We construct our benchmark set by 4000 images in
12 different classes collected from the Internet with little manual
filtration. We extend the basal dataset to 10000 images by adopt-
ing several methods, including snapshots of rendered 3D models
with a cartoon shader, a 2D-3D-2D converting procedure using a
cartoon-modeling method and a hand-drawing stylization filter.
Then, we describe how to build an effective neural network for
image semantic classification based on ToonNet. We present three
techniques for building the Deep Neural Network (DNN), namely,
IUS: Inputs Unified Stylization, stylizing the inputs to reduce the
complexity of hand-drawn cartoon images ; FIN: Feature Inserted
Network, inserting intuitionistic and valuable global features into
the network; NPN: Network Plus Network, using multiple single
networks as a new mixed network. We show the efficacy and gen-
erality of our network strategies in our experiments. By utilizing
these techniques, the classification accuracy can reach 78% (top-1)
and 93%(top-3), which has an improvement of about 5% (top-1)
compared with classical DNNs.

CCS CONCEPTS
• Computing methodologies → Neural networks; Image process-
ing; Supervised learning by classification;
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1 INTRODUCTION
Cartoons have always been very popular among children even
adults for many years. Cartoon-style pictures can be seen almost
everywhere in our daily life. More and more applications try to deal
with this style of pictures, so building a cartoon-style dataset will
be valuable. Such a dataset can serve as a training or evaluation
benchmark for applications, like semantic classification systems,
skeleton extraction methods, cartoon picture modeling systems,
etc. It will be be beneficial to various cartoon image applications,
like Cartoon-face maker, Art-teaching apps, etc. As a result, we
construct a basic cartoon dataset, and build an efficient semantic
classification neural network for it.

Many large-scale image datasets are widely used for object de-
tection and recognition, like MNIST [Lecun and Cortes 2010] and
Imagenet[Deng et al. 2009] [Russakovsky et al. 2014], and also a
few well-labeled small datasets, like Caltech[Griffin et al. 2007],
PASCAL[Everingham et al. 2010], MSRC[Shotton et al. 2006], CI-
FAR10/100[Krizhevsky and Hinton 2009], etc. Recently, many aca-
demics focus on the extension of these well-known datasets. How-
ever, almost all the images that these datasets mentioned above
contained are real-world-style, which have a great difference with
cartoon-style images in visual perception.

Constructing a cartoon image dataset will be faced with chal-
lenges. Cartoon images are not the snapshots of real-world objects,
so it is difficult to make use of existing resources to generate cartoon
pictures. Although a number of cartoon images from the Internet
are available, most of them have the similar cartoon-style: one big
color block connected with another. What we need is a dataset with
multiple cartoon styles. Therefore we focus on generating other
genres of cartoon images like color-penciled style and crayon style,
and present three strategies to extend our basal dataset. First, we
make use of 3D cartoon models. We implement a cel-shader on the
models. Then we take snapshots of them from several angles of
view automatically. The second strategy is a 2D-3D-2D procedure.
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Figure 1: Overview of ToonNet.1 We expand our dataset us-
ing several methods which will be explained in Section 3

We take advantage of [Feng et al. 2017], a lightweight 2D-3D car-
toon picture modeling method, to generate multiple 3D cartoon
models, and do similar operations as the first strategy. Another
policy is an image processing method, by using a hand-drawn style
filter to change a common cartoon image to hand-drawn styles. We
segment the image by color and location, apply randomly rotated
grayscale texture to each part, and finally map the color back.

Another major component of this paper explains how to de-
velop a deep neural network model targets the constructed recog-
nition dataset. Convolutional neural networks have shown excel-
lent performance in solving visual recognition problems in past
few years. However, some most state-of-the-art DNN models like
GoogleNet[Szegedy et al. 2015a] and ResNet[He et al. 2016] focus
on the recognition problem of real-world-style images. Notwith-
standing the formidable ability of these models can be used for a
cartoon picture semantic classification system, the semantic classifi-
cation results are not good enough on ToonNet in our experiments.
We intend to obtain an appropriate semantic classification system
to deal with the cartoon picture dataset. And we present three
novel techniques for building the model. The Inputs Unified Styliza-
tion (IUS) technique, we make the stylization of the inputs unified
on the premise that does not destroy the principal semantic in-
formation of the input. IUS reduces the complexity of inputs and
enhances classification accuracy. The second technique is Feature
Inserted Network namely FIN. Since traditional neural network
inputs lack intuitionistic statistical information, like the RGB color
histogram which may be valuable of cartoon images, we insert such
information into the network and gain better performance. We also
apply NPN (Network Plus Network) technique, which is a kind of
fractional trained network and a derivant of NIN(Network In Net-
work)[Lin et al. 2013] and [GE and RR 2006]. We pre-trained several
traditional DNNs on our dataset, and collect their pre-logits layers
(the layer before the final full-connected(FC) layer), and retrain
these connected collected FC layers as a new plus-network, we find
that NPN obtains a higher stability and recognition accuracy than
single DNNs.

With the semantic classification information gained by our DNN-
based system, we can enhance the functionality of applications like
image skeleton extraction method or some other applications and
achieve better user experiences.

The main contributions of this work are:

1Part images of the dataset that collected from http://www.pixabay.com.

• We construct a cartoon-style image dataset ToonNet, be-
sides collecting from the internet, we use snapshots of 3D
models with a cartoon shader, a 2D-3D-2D procedure using
a cartoon-modeling method and a hand-drawn stylization
filter to enrich our dataset, to gain a picture set with multiple
cartoon-styles.

• We introduce strategies on building a DNN-based seman-
tic classification system for cartoon style images, which in-
volves IUS, FIN and NPN techniques, and performs better
than traditional state-of-the-art DNNmodels, like GoogleNet,
ResNet, etc.

The rest of the paper is organized as follows. The next section
describes an overview of related work. Section 3 shows the tech-
nologies when constructing ToonNet. In section 4 we present the
three key techniques of our DNN model and then shows some ex-
periments on it. Finally we summarize this article and outline some
future works.

2 RELATEDWORK
There are a number of well-known image datasets. MNIST[Lecun
and Cortes 2010] is one of the most widely-used datasets in simple
image recognition field using machine learning. It is a database of
handwritten digits, consists of 60000 training samples and 10000
test samples. There are small datasets like Caltech256[Griffin et al.
2007]: a challenging set of 256 object categories containing 30607
images, PASCAL[Everingham et al. 2010]: a developing image data-
base since 2015 and contains image information for Classification,
Detection, Segmentation and Person Layout Taster, MSRC[Shotton
et al. 2006] published by Microsoft, CIFAR10/100[Krizhevsky and
Hinton 2009], etc. Other datasets like Imagenet[Deng et al. 2009],
a database with millions of images, is so widely used that has al-
most been the "standard" dataset for measurement and competition
[Russakovsky et al. 2014] of algorithm performance in the field of
computer vision. However, all these datasets mentioned above are
in terms of collections of real-world-style images. So it is necessary
and pioneering to construct a cartoon-style image database.

We need a dataset with many tags and lots of data for recogni-
tion. However, there are not enough cartoon datasets available on
the Internet. Bagdanov et al. [Bagdanov 2012] provides a cartoon
dataset, but it does not meet our need because it is mainly used for
object detection. Yu et al.[Yu and Seah 2011] also provides a small
cartoon dataset including Tom and Jerry for cartoon similarity esti-
mation. Since we cannot find a practical dataset to use, we finally
decide to construct our own dataset.

There are lots of methods to help to generate cartoon image data.
Ha et al. [Ha and Eck 2017] develop a method to automatically gen-
erate sketch drawings based on a neural representation. They use
sketch-RNN to achieve both conditional and unconditional sketch
generation, which can draw simple cartoon sketch drawings like
cartoon cats, buses, penguins and so on. This method can provide
lots of sketch drawings in a reasonable amount of time, but the
quality is not good enough because the dataset they use contains
just doodles drawn by human. Liu et al. [Liu et al. 2017] use GAN to
paint black-white sketches automatically, and achieve satisfactory
results on Japanimation. However, it cannot be used to auto-paint

http://www.pixabay.com
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simple cartoon images. The main reason is that Japanimation usu-
ally contains lots of complex colors but the cartoon image we need
just contains several simple colors. Gatys et al. [Gatys et al. 2016]
use Convolutional Neural Network(CNN) to transfer the style of
one image to another one, which can be used to transfer cartoon
styles. Given a source cartoon image, it can change the target image
to the cartoon style, but the result is not stable. Huang et al. [Huang
and Belongie 2017] furtherly optimize the style transfer method to
realtime. Dong et al.[Dong et al. 2017] propose a method to syn-
thesize realistic images directly with natural language description.
Given an image and text descriptions, it can apply the style that
the text described to the image, but it does not achieve satisfactory
results on cartoon images as well. Besides, 3D models can also
help to generate data because of their rich information. Mitchell
et al. [Mitchell et al. 2007] propose a practical Non-Photorealistic
Rendering method which can be used to cartoonize 3D models.

Different from traditional methods of image classification, neural
networks achieved amazing performance in recent years. Especially
these impressive winning models in Imagenet Large Scale Visual
Recognition Challenge (ILSVRC) [Russakovsky et al. 2014], such
as AlexNet[Krizhevsky et al. 2012], VGGNet [Simonyan and Zis-
serman 2014], GoogleNet[Szegedy et al. 2015a] and ResNet [He
et al. 2016]. [Canziani et al. 2016] gives a comprehensive analy-
sis of these state-of-the-art models of some important metrics in
practical applications, such as the relationship between accuracy
and inference time. Some academics[Bolukbasi et al. 2017] take use
of some of these networks to reduce the evaluation time without
loss of accuracy by adaptively utilizing them. For the structure of
network models, [Lin et al. 2013] propose a deep network structure
called Network In Network to enhance model discriminability. And
MCDNN[Schmidhuber 2012] calculate the average results of each
DNN, while NPN makes use of pre-logits layers of DNNs and uses
a CNN to combine them. However, since the cartoon dataset is
pioneering, few studies focus on developing a discriminative neural
network model used for cartoon-style picture classification. We
present three niche-targeting technologies and extend the archi-
tecture of the famous network models to a multiple-plus fractional
trained network. The goal of our network is to achieve better recog-
nition performance on our dataset.

3 CONSTRUCTING TOONNET
We use various methods to create and enlarge our cartoon data-
base. Cartoon images have many different styles, which requires
the dataset to include different styles of data as many as possible.
However, the data on the Internet is far less than we need, so we
introduce several methods to generate new data using existing data.
All of these methods are explained below in detail.

3.1 Data Collection
We first use a web collector to build our initial dataset. We define
11 different tags (android robot, car, elephant, dog, flower, cat, bee,
penguin, tree, panda, cloud) and collect about 1000 images for each
tag from the Internet. However, the data we get is crude and noisy,
so we have to filter it manually. We finally obtain about 4400 images
in total, which is not sufficient to construct a practical dataset. Thus,
we introduce several methods to replenish the dataset.

3.2 Snapshots of 3D models
3D models are applicable to generate new data because we can
get large amounts of different snapshots of models from any posi-
tions and angles of view. To make those snapshots look like being
drawn by a human, Non-Photorealistic Rendering methods have
to be applied to models in advance. Our method first applys a cel-
shader (or toon shader) to the model, then depict contours using
Sobel operator, and finally capture several snapshots of the model
automatically. The light model of our cel-shader is computed as

Ic = kaia +
∑

m∈l iдhts

(kd (α(Lm · N ) + β)im,d )

×Ramp(α(Lm · N ) + β))

(1)

Where Ic is the output color, ia controls the ambient lighting,
im,d controls the diffuse lighting of lightm, ka and kd are the ambi-
ent and diffuse terms of the 3D model, Lm is the light vector, N is
the normal vector, α and β are coefficients of Half Lambert[val [n.
d.]] model and are usually set to 0.5. We ignore the exponent term
of Half Lambert for simplicity. Ramp() function refers to sampling a
1D ramp texture by diffuse light intensity, and returns the sampled
value. Figure 2 shows the ramp texture we use. We use Half Lambert
lighting technique to ensure plenty of light when viewing from dif-
ferent angles, and a ramp texture to obtain cartoon-style tone. The
specular term is ignored because few cartoon images consider the
highlight. In practice, we only use ambient light and one directional
light, since cartoon images usually do not care about complex light
conditions.

Figure 2: The ramp texture we use is a 3-level grayscale im-
age. Using this texture, the cel shaded model will have up to
three diffuse intensity levels.

(a) (b) (c) (d)

Figure 3: (a) is the input model. (b) is the model added cel
shader. (c) is the model depicted contours using Sobel oper-
ator. (d) is the snapshot of the model from a different angls.

We postprocess the scene using Sobel operator to depict the
contour of the cartoon model. We only apply Sobel operator to the
color buffer because the white background and the ramp texture
ensure high contrast ratio of the color buffer image to let Sobel
operator work properly. Thus we do not need help from depth
buffer or normal buffer.

After applying cel shader and Sobel operator, we finally capture
snapshots of the model from different angles, getting the generated
data. Using this method, we can easily generate a mounts of cartoon
images data from a single model. In our dataset, we collect 200
models and generate 2000 images. Figure 3 shows how to convert a
3D model to 2D cartoon images.
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3.3 2D-3D-2D procedure
Besides generating cartoon images from a 3D model, we also con-
sider generating multiple images from a 2D image. This requires
applying transformation technique to the original image. We use
MagicToon [Feng et al. 2017], a 2D-to-3D creative cartoon modeling
system as our transformation method. First, we use MagicToon to
convert the 2D cartoon image to a 3D model, then capture snap-
shots of the models from different angles of view automatically to
obtain new cartoon images. We do not need to apply NPR methods
to the model again because this method has already done the toon
shading step. All we need is to model the image input, and capture
snapshots. Using this method, one single cartoon image can gen-
erate many new cartoon images easily. And we also use a black
stroke style shader to make the images captured might look more
like hand-drawn cartoon images. We get about 1500 new images
by the procedure. Figure 4 shows how a cartoon image generates
new images using a 2D picture-modeling system.

(a) (b) (c) (d)

Figure 4: Generating images usingMagicToon. (a) are the in-
put images. (b) show the models generated in Unity3D. (c,d)
are the images captured by the camera.

3.4 Hand-drawn stylization filter
Cartoon images usually have different styles, like pencil sketch
style, crayon style, CG style, etc. A cartoon dataset should have
different styles of cartoon images for variety. To achieve this goal,
we use a filter similar to Lu’s method[Lu et al. 2012] to change a
common cartoon image to a grayscale hand-drawn image. We first
convert the cartoon image to grayscale, and compute the gradient
of the image, using it as the edge image. Then we do tone mapping
to the grayscale image, changing it to a hand-drawn tone, and apply
a texture to it. We finally merge the edge image and texture image,
which generates the grayscale hand-drawn image.

To change the grayscale image to a color one, we apply the
following equation to the original cartoon image:

I = I +G −
G ◦ I

255
(2)

Where I is the original cartoon image and G is the grayscale
pencil-drawing-style image with texture. I and G are allw × h × 3
matrix, where three channels in G are the same (grayscale value).
Operator ◦ refers to Hadamard product. This equation will apply
the texture of the grayscale image to the original image. Consider a
pixel in G. When the pixel value is 0 (black pixel), the correspond-
ing pixel value of I does not change. When the pixel value is 255

(white pixel), the corresponding pixel value in I is also 255 (white
pixel). This means that the black strokes of the texture are mapped
to color strokes, and the white blank remains the same. Therefore,
the grayscale texture can be directly applied to the cartoon image
according to the color. In practice, we first apply histogram equal-
ization toG , darkening the strokes, otherwise, the color of the final
output image will be too light.

Furthermore, some pencil textures are so ordered that when
they are directly applied to the image, the image may seem weird.
This is because the ordered texture makes the image seem to be
drawn by a whole, and human definitely cannot draw different
areas and colors with only several strokes, like Figure 5(b) shows.
To solve the problem, we first use Mean Shift[Comaniciu and Meer
2002] to segment the cartoon image, and apply the texture to each
segmented area separately. When applying the texture, we rotate
it by a random angle in advance, so that each area seems to be
drawn separately, instead of being drawn by a whole, as shown
in Figure 5(c). After this transformation, the pencil-style cartoon
image seems more realistic.

(a) (b) (c)

(d) (e) (f)

Figure 5: Generating images using hand-drawn stylization
filter. (a) is the input image. 2(b) and (c) are the images added
pencil texturewithout andwith segmentation. (d) and (e) are
the images added two different crayon textures. (f) is the im-
age added customized texture.

Using this method, we can actually apply any textures to the car-
toon image beside pencil texture. Some textures like crayon texture
also achieve satisfactory results. And we gain about 2000 images
by the filter with different styles. We can even design textures
manually to customize cartoon effect and generate more cartoon
images. Figure 5 shows the result of different textures applying to
the cartoon image. These generated cartoon images are suitable to
replenish our dataset.

4 LEARNING A DNN MODEL
In this section, we introduce the three main techniques to build a
discriminative neural network model to recognize images in our
dataset. The task is to learn the relationship tags and input images.

2Cat(lion) image from pixabay.com user OpenClipart-Vectors (public domain).

pixabay.com
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The model is end-to-end. Input: one cartoon image; Output: se-
mantic classification result of it. 4.1 describes the pre-processing
strategy “Inputs Unified Stylization” called IUS, 4.2 gives the idea
to utilize the global features of images “Feature Inserted Network”
called FIN. In 4.3, we will show a fractional trained network struc-
ture using multiple networks “Network Plus Network”, we called
NPN.

4.1 Inputs Unified Stylization (IUS)
Data preprocessing always plays an important role in image pro-
cessing field. A suitable pre-processed input image will have a good
effect on neural networks learning tasks. As to our classification
system, since there will be various patterns or styles of cartoon
image in our dataset, we need to reduce the complexity of our image
inputs without loss of classification information. Thus we propose
IUS method, to change these cartoon images to a unified and simple
style.

The basic idea is to apply a filling algorithm analogous to Flood
Fill [Bhargava et al. 2013] that replaces similar colors with one color
and fills the image.

Firstly, we need to find and mask background and outline of the
image, which should not be filled. They are always light or dark col-
ors rather than absolute white or black. Thus, we convert the image
from RGB color space to HSV color space for better recognition. In
practice, the background pixel has a lower saturation(S) close to the
minimum and a higher value(V), while the outline pixel has a low
value(V) which is actually a little bigger than minimum because the
hand-drawn outline is not dark and homogeneous enough. Besides,
some small light color regions are left due to arbitrary painting,
which should not be masked as background.

In addition, hand-drawn images have the feature that colors are
painted irregularly. Therefore, we do preprocessings to the images
like Mean Shift [Comaniciu and Meer 2002] filter, replaces each
pixel with the mean of the pixels in a certain range neighborhood
with similar colors. To make our result more colorful, we separate
an image into several small regions, and in each region, pick up the
pixel with the highest saturation as a seed pixel. Now we can start
to fill the image from a seed pixel. Each neighborhood pixel of the
seed will be checked, and if it either has a close hue(H) to the seed
pixel or is the light pixel not masked as background, it will be filled
with the same color as the seed pixel’s and its eight neighborhood
pixels will be checked soon. This procedure will repeat by using
the strategy of the breadth-first search until no pixel is filled and
then restart from another seed pixel. Figure 6 shows the results of
filling hand-drawn images.

(a) (b) (c)

Figure 6: The examples of images parsed by IUS .(left) In-
put images and (right) the filled images by our algorithm .
The white among strokes are filled and the colors are more
homogeneous.

Figure 7: An example of a Feature Inserted Network

Finding a stylization method to make inputs unified may be
suitable for cartoon-style images, but it is more difficult for real-
world-style images. Pictures captured in the real world contain
much more complicated information of both backgrounds and fore-
grounds, which leads to the trouble reducing the complexity of
inputs without loss of obbligato details. As a result, Inputs Uni-
fied Stylization preprocessing strategy for real image recognition
problem may have limitations.

4.2 Feature Inserted Network (FIN)
Global features of images are very useful to a classification sys-
tem, especially targeted on characteristic data like cartoon images.
Traditional neural networks usually use end-to-end models, and
always begin with convolution or some local region targeted opera-
tions. These operations might result in a lack of some intuitionistic
statistical information that may be valuable. Although the strong
learning ability of efficient DNNs can get a few abstract features
after long time training, inserting valuable features into networks
directly may still enhance the analytical ability.

After IUS preprocessing, the inputs we get are images with sim-
ple backgrounds and a unified style that one big color block con-
nected with another. The colors of these blocks are valuable, so we
determine to use the color histograms of the cartoon image as our
inserted feature. We count up the frequency of occurrence of pixel
values from 0 to 255 in each RGB channel, and merge the 256×3
cells into n×3 bins(n=19 in our experiments). The histogram infor-
mation will be inserted into a normal network after normalization
on mixed-channels. We divide a normal network into several parts:
the input layer with a resized image; the core of a normal network,
which contains all the layers before the final pre-logits layer; the
final pre-logits layer, which is layer before final FC layers, the size of
the layer is 4096 in VGGNet and 2048 in ResNet50/101/152[He et al.
2016] and GoogleNet_v3[Szegedy et al. 2015b]; the final FC layer
and the softmax outputs layer. As figure 7 shows, we insert our
global feature into the final pre-logits layer, and use a convolution
layer to convert the RGB-features into one-dimensional feature
logits, then an additional full-connected layer appended, between
the feature inserted layer and the final output layer, as the updated
pre-logits layer.

In our work, we use RGB histogram information as the feature
for FIN in experiments, but the features that can be inserted into
networks are not limited to it. The RGB information may be in-
adaptable for real-world style images since some of them have
complicated backgrounds and more detailed texture than cartoon
images. We can choose other local or global valuable features of
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Figure 8: Overview of a Network Plus Network structure

an input image such as the SIFT features, local color contrast, HSV
color histograms, etc.

4.3 Network Plus Network (NPN)
We propose a new multiple-network structure Network Plus Net-
work(NPN). The overall structure of NPN is a paratactic connection
of several pre-logits layers of normal networks, and a shallow CNN
in the end. Figure 8 is the overview of a sample NPN. The NPN struc-
ture contains two parts. The first subpart is a pre-training structure.
There could bem networks used here (N1,N2,· · · , Nm ), thus we call
the structure NPN-m. Thesem networks are pre-trained using the
same database.Actually, each network already has the ability of
image recognition, and they will have their unique features on the
same input image. We reserve the part of these networks that the
layers before the final FC layer, and retrain them as a mixed system.
The other subpart of NPN is the new training part, whose inputs
are them FC layers of the pre-training part. For each FC layer, we
implement a new FC layer on it to transform them into the same
dimension, e.g. 1×2048, and mix them as a m×2048 layer. Then a
m×1-size convolution layer is applied and a final FC layer at the
end.

Training a NPN model is a time-consuming task. We should
trainm normal networks on the dataset at the beginning. Thesem
networksmay have different types or color spaces of images, such as
RGB, HSV, GRAY, etc. And the models may have different structures
such as networks with FIN and networks without FIN, and they can
even be same models just with different training parameters. Then
we start training the multiple-network. We reload these m-models
and pick-up their pre-logits outputs as the new input, and train the
new simple CNN.

In particular, when we only choose one normal network (m = 1),
and at the training part, we reserve most parts of the pre-trained
network, and retrain the rest layers. The NPN-1 structure is a simple
fractional trained network and similar to the traditional networks
using [GE and RR 2006], with the ability of reducing the dimen-
sionality of data.

5 EXPERIMENTS
We evaluate our three network strategies (IUS,FIN,NPN) on our
constructed ToonNet that consists of 12 cartoon classes. We mea-
sure network using TensorFlow library for core computations and
Python for the front end, utilizing a server with Nvidia GeForce
GTX 980 with CuDNN 6. The batchsize used is 16 and AdamOp-
timizer as the optimizer. It costs about 1 hour for each DNN of
NPN and 15 minutes for the last CNN part. The model is trained

from scratch, since pre-trained models on ImageNet are tailored
for ordinary images.

We evaluate our method on several aspects, like evaluation time,
test accuracy etc. The results show that each learning strategy can
enhance the classification accuracy, especially the NPN structure.
Furthermore, our evaluation time cost is close to the cost of tradition
networks in spite of the m-times FLOPs of NPN-m structure for the
reason that NPN structure is born for parallel procession.

Note that the data we used for training is a random 70% of
our dataset, and the rest for tests, and we use the same data (the
random 70%) in all experiments. All these traditional networks use
Dropout[Hinton et al. 2012] and Batch-Normalization[Ioffe and
Szegedy 2015] as regularizers to improve the generalization and
inference ability and prevents overfitting. Our training use an initial
learning rate 2e-3, and divided by 10 every 5 iterations.

5.1 Experiments on IUS
We evaluate the evaluation accuracy on traditional networks and
the networks with IUS. The results in table 1 show that IUS has
the ability of enhancing test accuracy, especially for these shallow
networks with plain structure. Although the improvement is limited
for deep networks like ResNet and GoogleNet_v3, IUS is still useful
in most situations for its trivial time cost: 5ms per image.

Table 1: Top-1 test error on ToonNet constructed. The "With
IUS" means the custom networks only with IUS structure,
that is to say the inputs for them are pre-processed.

Custom With IUS
AlexNet 45.4 44.1
VGG-16 40.4 39.4
ResNet-50 36.8 36.5
ResNet-101 34.7 34.4
ResNet-152 32.8 32.6

GoogleNet_v3 27.1 26.7

5.2 Experiments on FIN
In our work, we insert the RGB histogram of the input image as our
feature in FIN structure. The modality of RGB histogram is quite
different between real-world-style images and cartoon-style, be-
cause images captured in the real world may have more complicated
details.

In our experiments, FIN can improve the evaluation accuracy
as well, as table 2 show. For gray image inputs, FIN can improve
accuracy much more than that with RGB images inputs, for the
reason that the lack of color information is inherent for gray images.
FIN enhance the performance even though the custom powerful
networks can learn a bit of color information.

5.3 Experiments on NPN
NPN is the main structure of our system. In our experiments, NPN
show several fantastic features in machine learning tasks.

First, NPN is suitable for machine learning tasks on computers or
servers with common specifications, which may have the limitation
of parameter chosen, like batch size. We unable to use a very large
batch size when training a traditional network because of high video
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Table 2: Top-1 and Top-3 test error on ToonNet constructed.
Thenetworks tested here areR-101: ResNet of 101 layers and
G-v3: GoogleNet Inception-v3.

Color
Space

IF With
FIN

Top-1
err.

Top-3
err.

R-101
GRAY - 37.6 15.6

√
35.4 13.5

RGB - 34.4 12.8
√

33.0 11.8

G-v3
GRAY - 30.3 12.8

√
28.4 11.5

RGB - 26.7 9.6
√

25.8 8.7

memory cost. Since NPN structure uses a fractional training strategy
and has fewer FLOPs (Floating Point Operations Per Second) in the
training part, we can choose a small batch size for the pre-training
part of NPN and a much bigger one for the training part. We use
NPN-1 structure in the batch-size experiment. And figure 9 shows
the results. We pretrain ResNet-101 and GoogleNet-v3 using batch
size of 24, and use different batch size for the training part. We argue
that a vary small batch size (16, 8, e.g.)may have poor ability to
converge to a good global optimum of the training set despite that
normal batch size is not trivial to keep the accuracy of networks.
The NPN structure makes us able to use different batch size for
different network parts (pre-training part and training part), and
achieve a higher accuracy.

Second, NPN-m (m > 1) structure has much better one-crop
accuracies than traditional state-of-the-art networks. Figure 10
is a convincing proof that different networks will have different
pre-logits layers for the same input, and it is no doubt that each
pre-logits layer of these networks has its unique feature of the input
image. If the networks used are similar like G-v3 and G-v3 with FIN,
the features of them will be analogous as well but still have some
differences. NPN-m structure is created to combine these features of
different networks, and gain a feature more valuable. Table 3 shows
the outstanding inference performance of NPN-m on our dataset.
We test different group with R-50, R-101, G-v3 and G-v3-FIN. We
find that a mixed network (NPN) outperforms a good single model.
And the better single nets chose for NPN, the better performance

3Penguin image from pixabay.com user OpenClipart-Vectors (public domain).

Figure 9: Different batch size used in the training part of
NPN-1 structure. When batch size is up to 64, it is not trivial
to keep the accuracy of network.

Figure 10: Visualization of pre-logits layers.3
Table 3: The inference performance of NPN-m structure.
The columnm shows how many networks we used in NPN.
The second column is the networks used, G-v3-FIN means
GoogleNet Inception-v3 with FIN.

m Network used Top-1 err. Top-3 err.
1 R-101 33.3 11.8
1 G-v3 25.4 8.1
2 R-101 & G-v3 24.7 7.2
2 R-101 & G-v3-FIN 24.0 7.2
2 G-v3 & G-v3-FIN 23.3 7.3

3 R-101 & G-v3
& G-v3-FIN 22.4 7.0

4 R-50 & R-101
& G-v3 & G-v3-FIN 22.4 7.3

Figure 11: The comparison of training status between NPN-
3 (use R-101, G-v3 and G-v3-FIN ) and G-v3. Left: training
loss of NPN-3 and G-v3. Right: training error and top-1 error
of two networks.

will be achieved, such as the difference between NPN-2 with R-
101,G-v3 and NPN-2 with G-v3,G-v3-FIN. Moreover,m is not linear
with the inference performance as results show.

The training part of NPN-m can have a much faster conver-
gence since the networks in the pre-training part have been trained
already. Like the training status in figure 11 shows, NPN-3 can con-
vergence to an ideal state in 2 iterations. And the convergence will
have more smooth loss shocks than normal networks (the green
frame in subfigure left 11).

An appropriate selection of m is significant, since m is linear
with the total training time cost, we should pre-trainedm useful
single networks for a NPN-m network. So it may become a trade-off
between largerm and shorter training time.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we present ToonNet, a cartoon-style image recogni-
tion dataset. Since we cannot get enough data from the Internet
(about 4400 images after manual filtration), we introduce several
methods to expand our dataset, including snapshots of rendered

pixabay.com
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3D models, 2D-3D-2D procedure and hand-drawn stylization filter.
Using these methods, we can easily generate new data based on
other resources.

In the future, besides going on enlarging the database(the number
of tags and the images in each tag) , we can make our dataset
support not only recognition, but also new features like semantic
segmentation. By adding segmentation information to our data,
users can train neural networks like DeepLab[Chen et al. 2018].

We also provide a targeted strategy for building a DNN-based
classification system using IUS, FIN and NPN, and enhance the
performance compared with state-of-the-art networks. IUS makes
the inputs have a unified style with little time cost and FIN takes
advantage of global features of cartoon images. Both make use of
the characteristics of cartoon style inputs and may only suitable for
cartoon-image training tasks. NPN extends the architecture of clas-
sic networks and may be a universal strategy in different situations.
It make sense that NPN is able to gain a better performance than
single models by mixing their features. At the next stage, we will
train NPN on other real-world style image databases, like CIFAR
and Imagenet.
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